Les boîtes à moustaches vous plaisent, mais R base vous lasse ? Tournez-vous vers {ggplot2} ! Si vous ne savez pas encore comment créer un graphique avec {ggplot2}, nous vous invitons à visiter notre page dédiée. Ensuite, c’est tout simple, il suffit d’utiliser le geom geom_boxplot ! À l’intérieur de votre aes, x sera votre variable de groupe, et y la variable numérique à visualiser. library(ggplot2) data(« DNase ») ggplot(DNase, aes(Run, density)) + geom_boxplot() Comment lire une boîte à moustache ? Le gros trait central indique la médiane. Les deux extrémités de la boîte les 1er et 3e quartiles — 50% des observations se trouvent donc dansRead More →

Les boxplots mettent parfois en évidence des individus qu’on peut qualifier d’atypiques ou outliers. Un fois mis en évidence graphiquement on peut les repérer et si nécessaire les enlever. #on crée un jeu de donnée b1<-c(0.1, 0.2,6,5,5,6,7,8,8,9,9,9,10,10,25)#on trace le boxplotboxplot(b1) #il y a 3 outliers #on met le boxplot dans un objet boxbox<-boxplot(b1)boxplot(b1)#box$out donne les outliers#on crée des nouvelles données sans les outliersb2<-b1[-which(b1%in%box$out)]#on vérifieboxplot(b2)Read More →

Vous voulez représenter vos données avec la boîte à moustache de Mr Tukey (boxplot)? Rien de plus facile avec R. #jeu de données fictif pour exemplea<-c(1,1,1,5,5,5,5,6,6,8,8,20,30)b<-c(0.5,4,5,6,6,6,6,6,7,7,7,7,8)#traçons les boxplots de base avec la fonction boxplotboxplot(a)boxplot(b)#on enlève les outliers, en mettant outline=FALSEboxplot(a,outline=FALSE)boxplot(b,outline=FALSE)#pour les mettre à l’horizontalboxplot(a,horizontal=TRUE)boxplot(b,horizontal=TRUE)#changer de couleurboxplot(a,border= »blue »)boxplot(b,border= »purple »)#nouveau jeu de données plus complexen<-c(1,1,1,5,5,5,5,6,6,8,8,20,30,0.5,4,5,6,6,6,6,6,7,7,7,7,8,3,5,8,8,8,8,8,9,9,9,9,11,12)m<-c(rep(‘A’,13),rep(‘B’,13),rep(‘C’,13))data<-data.frame(N=n,M=m)#on visualise le tableau ainsi créédatasummary(data)#On a 13 mesures pour chaque modalité (A,B,C)#comment avoir les boxplots pour chaque modalité?boxplot(data$N~data$M)#on enlève les outliers boxplot(data$N~data$M,outline=FALSE)#on change les couleurs avec l’argument borderboxplot(data$N~data$M,outline=FALSE,border=c(« blue », »purple », »green »))#on change les noms avec names: A devient mesure1, B mesure2, C mesure3boxplot(data$N~data$M,outline=FALSE, names=c(« mesure1″, »mesure2″, »mesure3″))#on ajoute les légendesboxplot(data$N~data$M,xlab= »légende x »,ylab= »légende y »,main= »boxplot »)#on colore les boîtes avec l’argument colboxplot(data$N~data$M,outline=FALSE,col=c(« blue », »purple », »green »)) #on changeRead More →

for ( i in 1:10) { print(i) } Cette commande peut se traduire par : Pour (i allant de 1 à 10) { affiche i} Il faut noter que les parenthèses () servent à définir la variable et les valeurs qu’elle va prendre successivement à chaque tour de boucle. Les accolades {} servent à délimiter les actions à effectuer pour chacune des valeurs prises par la variable. IMPORTANT : R n’aime pas vraiment les boucles for, il est beaucoup plus efficace d’utiliser apply. Tout particulièrement pour les très grandes et longues boucles, apply fait cela en une fraction de seconde… alors que for peut mettreRead More →